Resit Exam — Analysis (WBMA012-05)

Thursday 14 April 2022, 8.30h-10.30h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (5 + 8 + 8 = 21 points)

Assume that $A \subseteq \mathbb{R}$ is nonempty, and define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sup\{1 - |x - a| : a \in A\}.$$

- (a) Use the Axiom of Completeness to explain why the supremum exists.
- (b) Prove that if $x \in \overline{A}$, then f(x) = 1.
- (c) Compute f(x) when $A = \mathbb{Q}$ and $x = \sqrt{2}$. Motivate your answer.

Problem 2 (8 + 8 + 8 = 24 points)

You may assume without proof that $\pi = 3.14...$ is irrational and that x = 1 is a limit point of the set

$$A = {\cos(n) : n \in \mathbb{N}},$$

where $\mathbb{N} = \{1, 2, 3, \dots\}$ is the set of all natural numbers.

Show that A is not compact in three different ways:

- (a) A does not satisfy the definition of a compact set;
- (b) A is not closed;
- (c) A has an open cover without a finite subcover.

Please turn over for problems 3 and 4...

Problem 3 (8 + [3 + 10] = 21 points)

- (a) Formulate the Intermediate Value Theorem and the Mean Value Theorem.
- (b) Let $f:[0,1]\to\mathbb{R}$ be a differentiable function such that f(0)=0 and f(1)=1. Prove the following statements:
 - (i) There exists a point 0 < b < 1 such that f(b) = 1/2.
 - (ii) There exist points $0 < c_1 < c_2 < 1$ such that

$$\frac{1}{f'(c_1)} + \frac{1}{f'(c_2)} = 2.$$

Hint: consider the intervals [0, b] and [b, 1].

Problem 4 (4 + 4 + 8 + 8 = 24 points)

(a) Let $x \neq 0$. Show that

$$1 + e^x + e^{2x} + \dots + e^{(n-1)x} = \frac{1}{1 - e^x} - \frac{e^{nx}}{1 - e^x}$$
 for all $n \in \mathbb{N}$.

- (b) Prove that the infinite series $\sum_{k=0}^{\infty} e^{kx}$ converges pointwise on the interval $(-\infty, 0)$.
- (c) Prove that for all a < 0 the convergence is uniform on the interval $(-\infty, a)$.
- (d) Is the convergence still uniform on the interval $(-\infty, 0)$?

End of test (90 points)

Solution of problem 1 (5 + 8 + 8 = 21 points)

(a) Let $x \in \mathbb{R}$ be arbitrary. The set $\{1 - |x - a| : a \in A\}$ is nonempty since A is nonempty.

(1 point)

In addition, for any $a \in A$ we have that $|x-a| \ge 0$ which implies that $1-|x-a| \le 1$. This shows that the set $\{1-|x-a|: a \in A\}$ is bounded above. By the Axiom of Completeness it follows that the least upper bound of this set exists.

(4 points)

(b) Recall that $\overline{A} = A \cup L$, where L is the set of all limit points of A. Assume that $x \in \overline{A}$. Then we must distinguish between two cases.

If $x \in A$, then with a = x we have 1 - |x - a| = 1 is the largest element of the set $\{1 - |x - a| : a \in A\}$. In this case, the supremum is just a maximum and thus f(x) = 1.

(2 points)

If $x \notin A$, then x must be a limit point of A. There are at least two different ways to show that f(x) = 1.

Method 1. For all $\epsilon > 0$ there exists $a_{\epsilon} \in A$ such that $0 < |x - a_{\epsilon}| < \epsilon$, which implies that $1 - |x - a_{\epsilon}| > 1 - \epsilon$. This shows that no number u < 1 can be an upper bound for the set $\{1 - |x - a| : a \in A\}$. Since in part (a) it has been shown that u = 1 is an upper bound, it follows that u = 1 is the least upper bound.

(6 points)

Method 2. There exists a sequence (a_n) in A such that $\lim a_n = x$ and $a_n \neq x$ for all $n \in \mathbb{N}$. Assume that u is an upper bound for the set $\{1 - |x - a| : a \in A\}$. We need to show that $u \geq 1$. Note that $1 - |x - a_n| \leq u$ for all $n \in \mathbb{N}$. Since $\lim |x - a_n| = 0$ it follows by the Order Limit Theorem that $1 \leq u$.

(6 points)

(c) Method 1. In the lectures it has been proven that $\overline{\mathbb{Q}} = \mathbb{R}$. Since $\sqrt{2} \in \mathbb{R}$, it follows immediately by part (b) that f(x) = 1.

(8 points)

Method 2. The rational numbers are dense in the real numbers, which means that for any real numbers s and t with s < t there exists a rational number r such that s < r < t.

(2 points)

In particular, for any $\epsilon > 0$ there exists $a \in A = \mathbb{Q}$ such that $\sqrt{2} < a < \sqrt{2} + \epsilon$. This implies that $1 - |\sqrt{2} - a| > 1 - \epsilon$.

(3 points)

Hence, no number u < 1 can be an upper bound of the set $\{1 - |\sqrt{2} - a| : a \in \mathbb{Q}\}$. Since 1 is an upper bound, we conclude that $f(\sqrt{2}) = 1$.

(3 points)

Solution of problem 2 (8 + 8 + 8 = 24 points)

(a) Since it is given that x=1 is a limit point of A, it follows that there exists a sequence (a_n) in A such that $a_n \neq x$ for all $n \in \mathbb{N}$ and $\lim a_n = x$.

(3 points)

Any subsequence (a_{n_k}) of (a_n) is then also convergent and has limit x.

(1 point)

However, $x \notin A$. Indeed, if $\cos(n) = 1$ for some $n \in \mathbb{N}$, then $n = 2k\pi$ for some positive integer k. This would imply that $\pi = n/2k$ is rational which is a contradiction.

(2 points)

We conclude that there exists at least one sequence (a_n) in A for which all subsequences have a limit which is not contained in A. This shows that A is not compact. (2 points)

(b) It is given that x = 1 is a limit point of A. However, as in part (a) we can argue that $x \notin A$. This means that A does not contain all its limit points.

(2 points)

In order for the set A to be closed, it must contain all its limit points which is not the case. Hence, A is not closed.

(3 points)

If the set A is compact, then A is both closed and bounded. However, we know that A is not closed and therefore also not compact.

(3 points)

(c) As in part (a) we can argue that $x \notin A$. This implies that $\cos(n) < 1$ for all $n \in \mathbb{N}$. Let $O_{\lambda} = (-2, \lambda)$, where $\lambda \in \Lambda = (0, 1)$. Then

$$A\subseteq (-2,1)=\bigcup_{\lambda\in\Lambda}O_\lambda$$

which means that the sets O_{λ} form an open cover for A. (Note: there are many possibilities for choosing the open sets O_{λ} and the index set Λ .)

(2 points)

Assume that $A \subseteq O_{\lambda_1} \cup \cdots \cup O_{\lambda_n}$ for some finite choice of indices $\{\lambda_1, \ldots, \lambda_n\} \subseteq \Lambda$. Let $M = \max\{\lambda_1, \ldots, \lambda_n\}$, then M < 1 and $A \subseteq (-2, M)$.

(2 points)

Recall x=1 is a limit point of A. This implies that for all $\epsilon>0$ there exists $a\in A$ such that $0<|a-1|<\epsilon$, or, equivalently, $a\in (1-\epsilon,1)$ since a<1. Taking $\epsilon<1-M$ gives M< a, which contradicts that $A\subseteq (-2,M)$. We conclude that the open cover O_{λ} for A does not have a finite subcover. Therefore, A is not compact.

(4 points)

Solution of problem 3 (8 + [3 + 10] = 21 points)

(a) Intermediate Value Theorem: Let $f:[a,b] \to \mathbb{R}$ be continuous. If L is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b), then there exists a point $c \in (a,b)$ where f(c) = L.

(4 points)

Mean Value Theorem: If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists a point $c\in(a,b)$ where

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(4 points)

(b) (i) Since $f:[0,1] \to \mathbb{R}$ is differentiable it is also continuous. (1 point)

Applying the Intermediate Value Theorem to f on the interval [0,1] with L=1/2 gives the existence of a point $b \in (0,1)$ such that f(b)=1/2. (2 points)

(ii) Applying the Intermediate Value Theorem to f on the interval [0, b] gives the existence of a point $c_1 \in (0, b)$ such that

$$f'(c_1) = \frac{f(b) - f(0)}{b - 0} = \frac{1}{2b}.$$

(4 points)

Applying the Intermediate Value Theorem to f on the interval [b, 1] gives the existence of a point $c_2 \in (b, 1)$ such that

$$f'(c_2) = \frac{f(1) - f(b)}{1 - b} = \frac{1}{2(1 - b)}.$$

(4 points)

Finally, we obtain

$$\frac{1}{f'(c_1)} + \frac{1}{f'(c_2)} = 2b + 2(1-b) = 2.$$

(2 points)

Solution of problem 4 (4 + 4 + 8 + 8 = 24 points)

(a) Method 1. An elementary computation shows that

$$(1 + e^x + e^{2x} + \dots + e^{(n-1)x})(1 - e^x) = 1 - e^{nx}.$$

Dividing by $1 - e^x$ on both sides and rearranging terms gives the desired result. (4 points)

Method 2. For n = 1 we have

$$\frac{1}{1 - e^x} - \frac{e^{nx}}{1 - e^x} = \frac{1 - e^x}{1 - e^x} = 1,$$

which shows that the requested formula holds for n = 1.

(1 point)

Now assume that the formula holds for some $n \in \mathbb{N}$. Then

$$1 + e^{x} + e^{2x} + \dots + e^{(n-1)x} + e^{nx} = \frac{1}{1 - e^{x}} - \frac{e^{nx}}{1 - e^{x}} + e^{nx}$$

$$= \frac{1}{1 - e^{x}} - \frac{e^{nx}}{1 - e^{x}} + \frac{e^{nx} - e^{(n+1)x}}{1 - e^{x}}$$

$$= \frac{1}{1 - e^{x}} - \frac{e^{(n+1)x}}{1 - e^{x}},$$

which shows that the formula also holds for n+1. By induction, the formula holds for all $n \in \mathbb{N}$.

(3 points)

(b) Method 1. Consider the partial sums

$$s_n(x) = 1 + e^x + e^{2x} + \dots + e^{(n-1)x}$$
.

For fixed $x \in (-\infty, 0)$ we have that $e^x \in (0, 1)$ and thus $\lim e^{nx} = \lim (e^x)^n = 0$. Using the Algebraic Limit Theorem gives

$$\lim s_n(x) = \lim \left(\frac{1}{1 - e^x} - \frac{e^{(n+1)x}}{1 - e^x} \right) = \frac{1}{1 - e^x} - \frac{1}{1 - e^x} \lim e^{nx} = \frac{1}{1 - e^x}.$$

(4 points)

Method 2. Consider the partial sums

$$s_n(x) = 1 + e^x + e^{2x} + \dots + e^{(n-1)x}$$
.

For fixed $x \in (-\infty, 0)$ we have that $e^x \in (0, 1)$ and thus $\lim e^{nx} = \lim (e^x)^n = 0$. This means that for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n \ge N \quad \Rightarrow \quad |e^{nx} - 0| < (1 - e^x)\epsilon.$$

Therefore,

$$n \ge N \quad \Rightarrow \quad |s_n(x) - f(x)| = \frac{|e^{nx} - 0|}{1 - e^x} < \epsilon.$$

(4 points)

(c) Method 1. If $x \in (-\infty, a)$, then $e^{nx} < e^{na}$ and $1 - e^x > 1 - e^a$. This implies that

$$|s_n(x) - f(x)| < \frac{(e^a)^n}{1 - e^a},$$

and thus

$$\sup_{x \in (-\infty, a)} |s_n(x) - f(x)| \le \frac{e^{na}}{1 - e^a}.$$

(4 points)

Since a < 0 it follows that $\lim e^{na} = 0$. By the Order Limit Theorem it then follows that

$$\lim \left(\sup_{x \in (-\infty, a)} |s_n(x) - f(x)| \right) = 0,$$

which implies that the sequence (s_n) converges uniformly to f on $(-\infty, a)$. (4 points)

Method 2. For all $x \in (-\infty, a)$ we have

$$|s_n(x) - f(x)| < \frac{e^{na}}{1 - e^a},$$

Let $\epsilon > 0$ be arbitrary and take $N \in \mathbb{N}$ such that $N > \ln((1 - e^a)\epsilon)/a$. Then

$$n \ge N \quad \Rightarrow \quad |s_n(x) - f(x)| < \epsilon \quad \text{for all} \quad x \in (-\infty, a),$$

which means by definition that the sequence (s_n) converges uniformly to f on $(-\infty, a)$. (8 points)

(d) For any fixed $n \in \mathbb{N}$ we have

$$|s_n(x) - f(x)| = \frac{e^{nx}}{1 - e^x},$$

and the right hand side is unbounded on the interval $(-\infty, 0)$.

(4 points)

In particular, it is *not* true that

$$\lim \left(\sup_{x \in (-\infty, a)} |s_n(x) - f(x)| \right) = 0,$$

which implies that the sequence (s_n) does not converge uniformly to f on $(-\infty, 0)$. (4 points)